Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Biomed Pharmacother ; 137: 111254, 2021 May.
Article in English | MEDLINE | ID: covidwho-1051488

ABSTRACT

The SARS-CoV-2, previously called a novel coronavirus, that broke out in the Wuhan city of China caused a significant number of morbidity and mortality in the world. It is spreading at peak levels since the first case reported and the need for vaccines is in immense demand globally. Numerous treatment and vaccination strategies that were previously employed for other pathogens including coronaviruses are now being been adopted to guide the formulation of new SARS-CoV-2 vaccines. Several vaccine targets can be utilized for the development of the SARS-CoV-2 vaccine. In this review, we highlighted the potential of various antigenic targets and other modes for formulating an effective vaccine against SARS-CoV-2. There are a varying number of challenges encountered during developing the most effective vaccines, and measures for tackling such challenges will assist in fast pace development of vaccines. This review will give a concise overview of various aspects of the vaccine development process against SARS-CoV-2, including 1) potential antigen targets 2) different vaccination strategies from conventional to novel platforms, 3) ongoing clinical trials, 4) varying challenges encountered during developing the most effective vaccine and the futuristic approaches.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Vaccination/methods , COVID-19/epidemiology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/classification , COVID-19 Vaccines/pharmacology , Clinical Trials as Topic , Drug Development/methods , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Treatment Outcome
2.
J Adv Res ; 30: 133-145, 2021 05.
Article in English | MEDLINE | ID: covidwho-950741

ABSTRACT

Background: Micro-RNAs (miRNAS) are non-coding, small RNAs that have essential roles in different biological processes through silencing genes, they consist of 18-24 nucleotide length RNA molecules. Recently, miRNAs have been viewed as important modulators of viral infections they can function as suppressors of gene expression by targeting cellular or viral RNAs during infection. Aim of review: We describe the biological roles and effects of miRNAs on SARS-CoV-2 life-cycle and pathogenicity, and we discuss the modulation of the immune system with micro-RNAs which would serve as a new foundation for the treatment of SARS-CoV-2 and other viral infections. Key scientific concepts of review: miRNAs are the key players that regulate the expression of the gene in the post-transcriptional phase and have important effects on viral infections, thus are potential targets in the development of novel therapeutics for the treatment of viral infections. Besides, micro-RNAs (miRNAs) modulation of immune-pathogenesis responses to viral infection is one of the most-known indirect effects, which leads to suppressing of the interferon (IFN-α/ß) signalling cascade or upregulation of the IFN-α/ß production another IFN-stimulated gene (ISGs) that inhibit replication of the virus. These virus-mediated alterations in miRNA levels lead to an environment that might either enhance or inhibit virus replication.


Subject(s)
COVID-19/immunology , Immunity/genetics , MicroRNAs/immunology , RNA, Viral/immunology , SARS-CoV-2/genetics , Gene Silencing/immunology , Humans , Interferons/immunology , Signal Transduction/immunology , Up-Regulation/immunology , Virus Diseases/immunology , Virus Replication/immunology
SELECTION OF CITATIONS
SEARCH DETAIL